### Divide and Conquer Strategy

Kurskal\'s algo to solve Minimum Cost Spanning Tree Towers of Hanoi Problem using Recursive Algorithm

### Cubic Time Algorithms

Prim\'s algo solve Minimum Spanning Tree - Graphic Bubble Sort Algorithm

### Logrithmic Time Algorithms

n_th term of fibonacci series - Toplogical Order Compute, display factorial using recursive algo Product of 2 matrices - Strassen\'s Algorithm

### Dynamic Programming Technique

Kurskal\'s algo - min cost spanning tree - graphics n_th term of fibonacci series - Divide and Conquer

### Exponential Time Algorithms

Prim\'s algo - min Spanning Tree - Mouse support Multiply two matrices

Prim\'s algo to solve Minimum Spanning Tree Problem Binary search algorithm

### Linear Time Algorithms

n_th term of fibonacci series

### Minimum Cost Spanning Tree Problem

Kurskal\'s - min cost spanning tree - mouse support Product of 2 matrices - Divide and Conquer

# Program to computes the n_th term of the fibonacci series using Toplogical Odering and Dynamic Programming Technique

``` # include <iostream.h>
# include    <conio.h>

const long fibonacci(const int);

int main()
{
clrscr( );

int number;

cout<<\"\\n Enter the number = \";
cin>>number;

cout<<\"\\n\\n The \"<<number<<\"_th term of fibonacci series = \"<<fibonacci(number);

getch( );
return 0;
}

//----------------------------  fibonacci( )  ---------------------------//

const long fibonacci(const int n)
{
if(n==0 || n==1)
return n;

else
{
long fn_1=0;
long fn_2=1;
long fn;

for(int count=2;count<=n;count++)
{
fn=(fn_1+fn_2);
fn_1=fn_2;
fn_2=fn;
}

return fn;
}
}
```